25-07-2018 01:57

Топливный элемент на водороде: описание, характеристики, принцип работы, фото

Топливный элемент - устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен катодом, анодом и электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Шумоизоляция "Нивы Шевроле": пошаговая инструкция с описанием, используемые материалы, отзывыВам будет интересно:Шумоизоляция "Нивы Шевроле": пошаговая инструкция с описанием, используемые материалы, отзывы

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливный фильтр "Лады Гранты": описание, замена и фотоВам будет интересно:Топливный фильтр "Лады Гранты": описание, замена и фото

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета - электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века - в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Панель приборов ВАЗ-2108: описание, устройство и особенностиВам будет интересно:Панель приборов ВАЗ-2108: описание, устройство и особенности

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные способы получения электроэнергии. Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Молекулярный водород диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории - высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов - катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. Молекулярный водород диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка - высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины - порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента - он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью - электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку - заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.



Источник